-16t^2+64+190=0

Simple and best practice solution for -16t^2+64+190=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+64+190=0 equation:



-16t^2+64+190=0
We add all the numbers together, and all the variables
-16t^2+254=0
a = -16; b = 0; c = +254;
Δ = b2-4ac
Δ = 02-4·(-16)·254
Δ = 16256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16256}=\sqrt{64*254}=\sqrt{64}*\sqrt{254}=8\sqrt{254}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{254}}{2*-16}=\frac{0-8\sqrt{254}}{-32} =-\frac{8\sqrt{254}}{-32} =-\frac{\sqrt{254}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{254}}{2*-16}=\frac{0+8\sqrt{254}}{-32} =\frac{8\sqrt{254}}{-32} =\frac{\sqrt{254}}{-4} $

See similar equations:

| 5x+6=33+2x | | |4x-24|=|2x| | | -5/3x+2/5-1/3x1=0 | | 5x-2=7x-1 | | 42t-8t-(-36)=-32 | | -6x-6(4x-13)=-102 | | 14p-(-17p)+(-12p)-(-9p)+(-16p)-(-15)=-9 | | x+3=-2/5x-11 | | -7x-4=6x-56 | | 3x+2(x-1)=2(x+1) | | 4(u+7)=-5u-44 | | 3x-49=103+11x | | 8q-5q+(-9q)+17q-(-8q)-(-2)=-17 | | 2+4x=5x+12 | | 9v-v+2v-3v=14 | | -15=-8y+5(y+3) | | 7x+2(x-3)=-39 | | 18d-(-5d)+(-19d)-13d+11d=-12 | | -25-15x=17-13x | | y-4/5=71/4 | | 37=-95+6x | | -10k+(-k)+14k+(-20k)-(-14)=-3 | | 6x-9-4x=6x-8 | | -8.3=d+47 | | 60+24y=20y-36y | | 121-4x=9 | | -42=4x+2x+6 | | 20k+5k+(-6k)-(-9)=-10 | | 0.80(5y-5)-0.60(-4y-6)=-58/5 | | 7x-3(-7-6)=18 | | 42=-2(m=6)+m | | -5x-7(-x-4)=14 |

Equations solver categories